- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Alvarez, Nicholas Emory (1)
-
Arunkumar, Sidharth (1)
-
Deters, Jessica (1)
-
Ford, Julie Dyke (1)
-
Gewirtz, Chris (1)
-
Hernandez, Cristian (1)
-
Howe, Susannah (1)
-
Knight, Daniel (1)
-
Kotys-Schwartz, Daria (1)
-
Paretti, Marie (1)
-
Rosenbauer, Laura Mae (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In preparing engineering students for the workplace, capstone classes provide unique opportunities for students to develop their professional identities and learn critical skills such as engineering design, teamwork, and self-directed learning (Lutz & Paretti). But while existing research explores what and how students learn within these courses, we know much less about how capstone courses affect students’ transitions into the workplace. To address this gap, we are following 62 new graduates across 4 institutions during the participants’ first 12 weeks of work. Participants were drawn from 3 mechanical engineering programs and one general engineering program. Women were intentionally oversampled in the study, with 29 participants identifying as female. Weekly surveys were used to collect quantitative data on what types of workplace activities participants engaged in (e.g., team meetings, project budgeting, CAD modeling, engineering calculations) and qualitative data on what challenges they experience in their early work experience. In this paper, we present a descriptive analysis of the data to identify patterns across participants. Preliminary analysis of the quantitative data suggests that the most common activities for our participants were team meetings and project planning (mentioned by >70% of participants) compared to formal presentations and project budgeting (mentioned by <30% of participants). Preliminary analysis of the qualitative data suggests that participants’ most challenging experiences clustered into two dominant groups: 1) self-directed learning, and 2) teamwork and communication. The results are intended to inform both capstone faculty and industry to identify areas of strength within current practices and areas for improvement in course design and structure and/or in industry onboarding practices.more » « less
An official website of the United States government

Full Text Available